Go to my Home page.
Go to my Joy of High Tech page.

The Joy of High Tech


by


Rodford Edmiston



Being the occasionally interesting ramblings of a major-league technophile.

Please note that while I am an engineer (BSCE) and do my research, I am not a professional in this field. Do not take anything here as gospel; check the facts I give. And if you find a mistake, please let me know about it.

Hanging Tough



     Science Fiction has a long history of including in stories fantastic materials with incredible properties, often with no basis in fact. These range from the arenak of Doc Smith to the scrith of Niven. Sometimes, though, a story will contain mention of something fantastic, but real. One of the most persistent of these is perfect, monocrystalline iron.

     I haven't been able to trace the first usage of this material in SF, but I do know it was used in van Vogt's Slan. It has also been used by Larry Niven several times, and was a main element (pun intended) in Descent of Anansi. This material was first made and tested in laboratories in the Twenties, and it wouldn't surprise me if the earliest use in a work of fiction came shortly afterwards. The stuff is a natural for SF stories, especially those focusing on technology and invention. Perfect iron is roughly one hundred times as strong as common steels, and four times as strong as the very best, super-exotic steels. Yet it retains much of the elasticity of wrought iron, enabling it to flex and absorb impacts without damage. Fantastically hard, chemically resistant, cheap if we can learn how to make it in large quantities, it is perfect for orbital tethers and may even be good enough for a Beanstalk.

     Measuring and describing in a meaningful way the properties of materials is a complicated business. You have hardness, elasticity, three types of yield strength, three types of ultimate strength and so forth. I'm going to concentrate on the yield strength, which is the maximum value before permanent deformation. I will restrict this discussion to values for tension, compression and shear, and I'm going to use units of Newtons per square centimeter, which is a bit unconventional but understandable by anyone in the materials testing business, or who is familiar with the metric system. This is greatly simplifying the study of materials properties, but do you really want to know what Young's Modulus measures? I didn't think so...

     As mentioned above, perfect iron has been made and tested in the laboratory... in laboratory quantities. Whiskers (to the materials engineer, a whisker is a fibre with no imperfections) generally are made by assembling atoms into a perfect matrix in a liquid or vapor phase deposition process. Now that I've explained my units, I can report that the figures for perfect iron are 4,600,000, 4,600,000, and 660,000 in Newtons per square centimeter for tension, compression and shear, respectively. The values for a typical mild steel, such as is normally used for structures, are 46,300, 46,300, and 38600. An excellent commercial steel would have typical values of 463,400, 463,400 and 380,000.

     Why is this perfect iron so much stronger than normal iron, or even steel? The secret is that there are no disruptions in the crystal structure of the metal to create weak spots. A chain is only as strong as its weakest link and a casting or forging is only as strong as its biggest flaw. That's part of the reason why we add carbon and other elements to iron to make steel. (Another reason is to increase the hardness.) These additions help reduce the size and number of and bridge the gaps caused by atomic misalignments which occur during the normal processes of iron and steel manufacture. In fact, many of the steps used in making steel are designed to reduce the number, size and detrimental effect of such flaws.

     Unfortunately, the inclusions of alloying materials also provide spots where corrosives - water being a major one - can chemically attack the metal. Pure iron is very resistant to corrosion, which is why wrought iron is used for lawn furniture. The Roebling bridge over the Ohio River doesn't really need to be painted, since it is made of wrought iron. (One of my materials instructors in college was involved in testing this structure for corrosion about thirty years back. He says if they had known it was made of wrought iron beforehand they wouldn't have bothered.) A bad paint job can actually accelerate corrosion, since paint that doesn't bond properly to the structure will separate from it, leaving a gap between paint and metal. Water and de-icing salt make their way into this gap and stay there, working on the metal for long periods, unseen. However, if a bureaucrat decides something needs painting...

     Of course, there are other materials besides iron, and many of them have also been tested in the form of perfect whiskers. The most impressive of these is carbon, in the forms of both diamond and graphite. Perfect diamond whiskers have values of 20,500,000, 20,200,000, and 12,100,000 N/cm^2 in tension, compression and shear. That's quite impressive. Hardness is closely related to tensile strength, so you can see why diamond is so hard.

     Perfect diamond is a another real material, but there is a theoretical material which is far stronger. It, too, uses carbon, but in the form of benzine-like rings. These are looped through each other in a three-dimensional matrix, and the impressive figures (1.0 X 10^15 (that's a 1 followed by 15 zeroes), 9.3 X 10^14, and 9.3 X 10^12 N/cm^2) for the yield strengths come from the fact that not only is deformation resisted by the normal molecular bonds, but by the mutual repulsion of the shared electron clouds around the rings. As you can imagine, this also makes the material extremely rigid. And hard. (My thanks to Dr. John Brantley for telling me about this.)

     There's more to a material than just strength, of course. Hardness is important for resistance to wear, and as mentioned above is directly proportional to tensile strength. There's also density. A long cable must be able to support both its own weight plus a useful load. Iron and steel have a density ranging from roughly 7.1 to 8.0 grams per cubic centimeter; diamond of a little over 3.5. A load/mass factor can be calculated simply by dividing the tensile strength by the density. This gives values of 585,200 for perfect iron and 5,758,400 for perfect diamond. You can see from this that diamond is much more desirable for long cables. Such as to geosynchronous orbit.

     So, how long before we ride cables of perfect iron or diamond to a space station? Probably quite a while. It is just too hard to make long, perfect cables with current techniques. However, if we are willing to settle for less than perfection, there are several ways to get most of the potential of perfect materials without having to actually make something perfect.

     One of the more promising is vapor phase deposition of diamond. This was originally developed to create substrates for electronic circuitry in integrated chips. Diamond is the best normal conductor of heat, and an excellent electrical insulator, making it ideal for this purpose. The process is simple, at least in theory. Carbon is vaporized in a vacuum chamber and allowed to settle onto a suitable material. Do this right and you get a uniform, near-flawless layer made of a single diamond crystal. However, you can do more with this process than make thin, flat sheets.

     One Japanese company is already marketing surgical instruments with bonded diamond coatings on the cutting edges. This produces blades which are incredibly sharp, very resistant to wear (to put it mildly) and only slightly more expensive than ordinary stainless steel. Several chemical research companies are experimenting with diamond-coating fine wires. Tests have shown that the resulting diamond coating approaches the strength of perfect diamond whiskers. All we have to do is set up a process to make these diamond-coated wires in continuous lengths, with the metal substrate etched out, and we have Beanstalk material. (And Forward assigns using diamond as a structural material to the category of indistinguishable from magic. ;-)

     Hollow tubes are actually structurally superior to solid wires in many applications. Another real material that comes in a hollow fibre form is buckytubes, or single-walled carbon nanotubes (SWCN). These have theoretical maximum yield strengths of 30,000,000 16,100,000 and 16,100,000, with values of 12,000,000, 7,000,000 and 7,000,000 being more likely. That's pretty respectable. Density is 1.300, which is even better. Buckytubes should also be easier to make than either diamond tubes or perfect iron wires. One NASA study developed details of making and deploying a Beanstalk using buckytubes. The only showstopper is motivation.

Yield Strengths for Various Materials

(Note: Some of these values are theoretical; others have been verified by testing.)


Yield Strengths for Various Materials                
                 
01/16/2003                          
    Yield Strengths                  
    (N/cm^2)     Failure Specific Melting Specific       
            Density Temperature Tensile Point Heat      
Material Type* Tensile Compressive Shear Tested g/cm^3 (kelvins) Strength (kelvins) (J/kg-k)      
A 286 T       Y 7.944              
ABS HT9000 G 6200    8100  Y                
ABS polymer G 6200    8500  Y 1.050 370  59          
ABS-Polycarbonate alloy G 6300      Y   370             
Acetal homopolymer  T 9900    15600  Y 1.050 375  94          
Acetal homopolymer HV (Delrin 900 & Tenac 7010) T 6800    10300  Y 1.420   48          
Acetal polymer (POM) G 15200      Y 1.420   107          
Acrylic G 7600      Y   380             
Acrylic-styrene-acrylonitrile (ASA) G 4200      Y   380             
Aerogel, typical silica T 1600      Y   370             
Alloy 253MA T 71,700     Y                
Alloy 600 T 66,200     Y                
Alloy 601 T 70,300     Y                
Alloy 800H T 56,600     Y                
Alumina (AD-995) T 11,900 260,000   Y 0.003   39667          
Aluminum  A 15,000   10,000 Y 2.720   55          
Aluminum  G 57,000   34,000 Y 2.600   219          
Aluminum  G 60,000   90,000 Y 2.600   231          
Aluminum  P 185,000   262,000   2.600   712          
Aluminum  T 9,200   6,600 Y 3.900   24   880       
Aluminum 2014-T6 A 48,300     Y 2.796   173          
Aluminum 6061-T6 A 31,000   20,600 Y 2.713   114          
Aluminum Bronze G 55,000     Y 7.778   71          
Aluminum Bronze E 62,000     Y 7.778              
Aluminum Bronze (5% to 7.5% Al) E 527,300 843,600   Y                
Aluminum (B51S, NS 17305) YS+A220 A 30,000     Y                
Aluminum 5083 (MIL-A-46026) E 35,000     Y 2.657   132          
Aluminum 7001-T6 E 67,500     Y 2.700   250          
Aluminum alloy (96 Al - 4 Cu) T 24,000     Y 2.600   92          
Aluminum alloy (96 Al - 4 Cu) G 41,500     Y                
Aluminum Oxide P 4,600,000   1,690,000                  
Aluminum Weldalite 049-T81 T 46,000   270,000 Y 2.600              
Aluminum, cast E 105,454 84,363   Y 2.700   391          
Aluminum, GIGAS24 or GIGSA30 E 70,000     Y 3.000   233          
Aluminum/short alumina fibre metal/ceramic composite T 53,100     Y 3.800   140          
Aluminum-lithium (Weldalite Al 2195) [100ksi] E 68,950     Y                
Americium T         13.670     1446         
Ampco No. 18 T       Y 7.584              
Antimony T       Y 6.690              
Asbestos P 586,000     Y 2.400   2442          
Asbestos T 6,890     Y 3.800   18          
Babbit (Lead/Tin) G 7,000     Y 2.400   29          
Bakelite T 10,000 24,000   Y                
Bamboo T     7800  Y                
Beanstalk (minimum)   1,380,000                      
Beryllium S 330,000     Y 1.850   1784          
Beryllium E 139,000     Y 1.800              
Beryllium aluminum E         1.870   0          
Beryllium Copper E 138,000   66,000 Y                
Beryllium IF-1, Foil Grade T 30,300   13,500 Y 1.844   164 1553  1925       
Bone, long G 13,800     Y                
Borazon G   5,000,000   Y                
Boron A 347,600     Y 2.340   1485          
Boron E 690,000     Y 2.450   2816          
Boron T 138,000 310,000 12,000 Y 2.460     2350         
Boron Composite T 154,500 347,600 13,100   2.500   618          
Brass  E 75,000     Y                
Brass (66% Cu - 34% Zn) T 48,300     Y 8.500   57          
Brass (70% Cu - 30% Zn) A 55,000     Y                
Brass (70% Cu - 30% Zn) E 197,500   189,100 Y                
Brass (83% Cu - 17% Zn) E 229,200   163,100 Y 8.500   270          
Brass (85% Cu - 15% Zn) T 41,500     Y 8.500   49          
Brass, Red T       Y 8.747              
Brass, Yellow T       Y 8.498              
Brick (building) T   21,000   Y                
Brick (fireclay) E   105,500   Y 2.300   0          
Bronze T       Y 2.100   0          
Bronze (70% Cu - 30% Sn) E 39,400 1,033,400 85,100 Y 8.800   45          
Bronze (76% Cu - 24% Sn) E 154,700 801,400 225,000 Y 8.800   176          
Bronze (80% Cu - 20% Sn) E 232,000 548,300 398,600 Y 8.774   264          
Bronze (87% Cu - 13% Sn) E 206,700 372,600 242,500 Y 8.800   235          
Bronze (92% Cu - 8% Sn) E 200,400 295,300 307,200 Y 8.800   228          
Californium T         15.300   0 1173         
Carbon (Buckytubes; Dyneema; B & C estimated ) T 300,000 140,000 140,000 Y 1.300   2308          
Carbon (Buckytubes; Single-Wall Nanotubes, or SWNT) T 1,960,000 920,000 920,000 Y 1.300   15077          
Carbon (Buckytubes; Single-Wall Nanotubes, or SWNT) G 6,300,000 2,900,000 2,900,000 Y 1.300   48462          
Carbon (Buckytubes; Single-Wall Nanotubes, or SWNT) E 13,000,000 7,000,000 7,000,000 N 1.300 2051  100000          
Carbon (Buckytubes; Single-Wall Nanotubes, or SWNT) P 30,000,000 16,100,000 16,100,000 N 1.300 2051  230769          
Carbon (Diamond) P 10,000,000 50,000,000 12,100,000 Y 3.515   28450   6.195       
Carbon (Diamond, Type Ia) E 5,000,000 20,000,000 6,000,000 Y 3.515   14225   6.195       
Carbon (Diamond, Type Ib) E 5,000,000 20,000,000 6,000,000 Y 3.515   14225   6.195       
Carbon (Diamond, Type IIa) E 5,000,000 20,000,000 6,000,000 Y 3.515   14225   6.195       
Carbon (Diamond, Type IIb) E 5,000,000 20,000,000 6,000,000 Y 3.515   14225   6.195       
Carbon (Diamond) T 4,000,000 10,000,000 5,000,000 Y 1.300 2051  30769   6.195       
Carbon- (Diamond)-coated tungsten T 1,189,000     Y                
Carbon (Diamond, CVD) T 120,000 11,000,000   Y 3.520              
Carbon (Diamond, polycrystalline/amorphous) S 70,000 70,000   Y 3.560   197          
Carbon (Graphene) P       Y 2.250              
Carbon (Graphite Composite) T 115,900 108,100 10,800 Y 3.520   329          
Carbon (Graphite Composite) G 301,000 280,000 28,000 Y                
Carbon (Graphite) G 68,950 69,000 5,000 Y 2.250   306          
Carbon (Graphite) E 138,000 97,000 10,000 Y 2.250   613          
Carbon (Graphite) S 241,000     Y 2.250   1071          
Carbon (Graphite) S 268,900     Y 2.250   1195          
Carbon (Graphite) T 36,300     Y                
Carbon (Graphite, T1000) P 689,500   11,500 Y 2.250   3064          
Carbon fibre E 500,000 400,000   Y 1.850 2051  2703          
Carbon fibre S 689,500 552,000   Y 1.850 2051  3727          
Carbon fibre T 200,000 160,000   Y 2.250   889          
Carbon fibre S 827,300 682,000   Y 1.850 2051  4472          
Carbon fibre composite (T300/ERL1906) G   193,000   Y 1.850 2051  0          
Carbon fibre, pultruded, unidirectional S 500,000                      
Carbon fibre/epoxy T 50,000 40,000   Y 1.777   281          
Carbon, (Graphite, crystalline) P 2,200,000     Y 1.777 2051  12380          
Carbon-Carbon T 900,000 400,000 1,000,000 Y 2.000 2273  4500          
Cellulosics G 4,500     Y 2.250   20          
CFCC (see note) T 450,000     Y   358             
Chromium A 68,900     Y                
Cobalt T       Y 8.920     1765         
Concrete G 1,380 6,890 2,400 Y 2.300   6          
Concrete T 250 2,000 800 Y 5.900   0          
Concrete, fibre-reinforced HP G   20,000   Y 2.500   0          
Concrete, high performance E   10,342   Y 2.500   0          
Copper A 21,600     Y 8.960   24          
Copper A 35,000     Y 8.800   40          
Copper CD 43,400     Y 8.900   49          
Copper P 3,900,000   120,000   8.800   4432          
Copper alloy (98 Cu - 2 Be) G 138,000     Y                
Copper alloy (98 Cu - 2 Be) T 74,000     Y                
Copper, Admiralty A 35,000   17,000 Y 8.525   41          
Copper, cast E 175,700 281,200 154,700 Y 8.900   197          
Copper-Nickel A 30,000     Y                
Copper-Nickel E 40,000     Y                
Copper-Nickel (90/10)  E 90,000     Y                
CTFE T       Y 2.100              
Dacron, Type 68 S 11,200     Y 8.900   13          
Dentin (bovine)   9,000     Y                
Dentin (human)   10,500     Y                
Depleted uranium                          
Diamond fibre matrix composite material G 200,000     Y 19.000   105          
Diamonddoid (MNT structural material) E 50,000,000     Y 19.000   26316          
Discaloy T       Y 7.972              
Duralumin E 43,400     Y 3.510   124          
Duramet 20 T       Y 8.027              
Durichlor T       Y 7.197              
Enamel (bovine tooth)   2,100     Y                
Enamel (human tooth)   1,000     Y                
ETFE fluorpolymer (Tefzel) E 8,300     Y                
Ethylene Vinyl Acetate (EVA) G 5,200     Y   480             
Fiberglass/Epoxy E 241,000     Y                
Fiberglass/Epoxy G 123,600     Y                
Fiberglass/Epoxy T 50,000 40,000   Y   319             
Fiberglass/Polyester T 13,800 13,800 24,100 Y                
Fiberglass/Polyester T 24,130 20,000 40,000 Y                
Fiberglass E 280,000     Y                
Formica T 10,000 24,000   Y 2.500   40          
Glass  P 700,000     Y                
Glass (plate) C 110,000     Y 2.900   379          
Glass fibre (Type E) E 345,000 100,400   Y 2.600   1327          
Glass fibre (Type S) E 463,400 100,400   Y 2.540   1824          
Glass, 98% silica (Vycor, 99.9% fused) T         2.490   0          
Glass, Alkali alumina borosilicate T         2.180 1803  0          
Glass, Alkali barium (optical) T         2.760 1117  0          
Glass, Alkali barium borosilicate T         2.600 920  0          
Glass, Alkali borosilicate T         2.270 985  0          
Glass, Alkali zinc borosilicate T         2.290 991  0          
Glass, Barium alumina borosilica T         2.570 993  0          
Glass, Borosilicate T         2.960 1120  0          
Glass, Borosilicate (Pyrex) T         2.280 993  0          
Glass, ceramic (transparent) T         2.230 1094  0          
Glass, Lead borosilicate T         2.550   0          
Glass, Lead zinc borosilicate T         5.460 720  0          
Glass, Lithia potash borosilicate T         3.800 643  0          
Glass, Mullite ceramic T         2.130   0          
Glass, Potash borosilicate T         0.640   0   950       
Glass, Potash soda lead T         2.160 1093  0          
Glass, Soda borosilicate T         3.050 903  0          
Glass, Soda Lime T         2.270 1081  0          
Gold (.999 fine) T 10,700     Y 2.470 969  43 846         
Gold (Ney-Oro A) A 22,100     Y 19.320   11          
Gold (Ney-Oro A-1) A 37,900     Y                
Gold (Ney-Oro B-2) A 44,800     Y                
Gold (Ney-Oro G-3) A 75,800     Y                
Gold (Sjoding C-3) A 45,700     Y                
Granite, gneiss, bluestone E 8,400 84,400   Y 1.000   84          
Gutta-percha T 1,900     Y                
Gypsum T 760     Y 1.000   8          
Hastalloy B G 90,000     Y 9.245   97          
Hastalloy C-276  G 35,500     Y 8.941              
Hastalloy D T       Y 7.806              
Hastalloy F T       Y 8.193              
Hastalloy X T 74,100     Y 8.221              
Haynes (21) T       Y 8.304              
Haynes (214) T 95,800     Y                
Haynes (230) T 86,500     Y                
Haynes (25) T       Y 9.134              
Haynes (31) T       Y 8.609              
Haynes (556) T 80,300     Y                
Haynes (HR-120) T 73,400     Y                
HCMF/AL ** T 800,000   16,000 Y 8.890   900          
HSMF/AL ** T 400,000   60,000 Y                
Hypalon rubber T 1,000     Y                
Incoloy 800 G 550,000     Y 8.055              
Inconel 600 T       Y 8.415              
Inconel X-750 T       Y 8.249              
Inconel-625 G 830,000     Y                
Inconel-625  G 415,000     Y 8.440   492          
Inconel-718 E 1,100,000     Y 8.440   1303          
Invar                          
Iridium           8.140   0          
Iron P 4,600,000 4,600,000 660,000 Y 7.650   6013 1108         
Iron (Ferrite) T 31,000     Y 7.860   39          
Iron carbide (cementite) T 35,000     Y                
Iron, Cast ** E 70,000     Y 7.150   98          
Iron, Cast ** A 21,000 72,000 28,000 Y 7.197              
Iron, Cast *** G 60,000 121,000 41,000 Y 7.700   78          
Iron, Wrought # G 62,000 62,000 55,000 Y 7.860   79          
Iron, Wrought # E 139,020     Y 7.860   177          
Iron, Wrought # A 38,600 38,600 30,900 Y 7.150   54          
Iron, Wrought # E 351,500 351,500 246,100 Y 7.150   492          
Iron/Ceramic Comp. P 4,731,000 4,805,000 1,500,000 7.860   6019          
Iron-Chromium A 637,000     Y                
Kevlar 29 E 332,000     Y 1.440              
Kevlar 29 G 279,700     Y                
Kevlar 29 T 45,000     Y                
Kevlar 29 (w/resin) S 362,000                      
Kevlar 49 E 297,000     Y 1.140 1255  2605          
Kevlar 49 G 279,700     Y                
Kevlar 49 (w/resin) S 362,000       1.150   3148          
Lead TC 21,000     Y 11.349    146 600         
Lead, Alloy (Linotype) T       Y 10.36    0          
Lead, Alloy (Lyman #2) T       Y 10.67    0          
Lead, Chemical, UNS L51120 T 19,000     Y 11.34    211 601  129       
Leather T 2,100     Y 1.440              
Leather G 4,100     Y 0.900   46          
Lexan T 7,000 7,000 9,000 Y 0.900   78          
Limestone, marble E 5,600 56,200   Y 0.900   62          
Lithium T       Y 0.534      455         
M-252 T       Y 8.249              
Macor (machinable glass ceramic) T 34,500 9,400 2,551,700 Y                
Magnesium  G 26,400     Y 2.520   105          
Magnesium  E 33,000     Y 1.740   190          
Magnesium  E 35,000   16,000 Y 1.740   201          
Magnesium  E 38,000     Y 1.740   218          
Magnesium  A 11,000     Y 1.740   63          
Magnesium  A 22,000     Y                
Magnesium Oxide P 3,700,000                      
Methyl Methacrylate (poly) T 3,000 5,000   Y 1.185   25          
Mica P 310,000     Y 2.700              
Micarta T 10,000 24,000 7600  Y 2.800   36          
Micarta (canvas + phenolic) T 6,900 24,800 9700  Y 1.370 325  50          
Micarta (Grade H-25126) T 7,300 24,800 7600  Y 2.800   26          
Micarta (linen + phenolic) T 9,000 24,800 9300  Y 1.340 400  67          
Micarta (paper + phenolic) T 9,000 24,100 8800  Y 1.380 333  65          
Molybdenum E 231,700     Y 10.300              
Monel G 55,000   39,000 Y 10.250   54          
Monel 400  G 20,000   39,000 Y 8.830   23          
Monel K500 T       Y 8.470   0          
Mullite T   55,000   Y 8.830   0          
Muntz metal T       Y 8.387              
N-155 T       Y 8.193              
N66 w/13% glass reinforcement T 12,700     Y 2.800   45          
N66 w/33% glass reinforcement T 19,300     Y                
Nanotube (Single-wall carbon) P 20,000,000 19,000,000 11,000,000 Y                
Neoprene T 620     Y                
Neptunium T       Y 20.450     910         
Nextel 312 T 170,000     Y 2.700 1223             
Nextel 440 T 200,000     Y 3.050 1473             
Nextel 550 T 200,000     Y 3.030 1573             
Nextel 610 (A0168) T 330,000     Y 3.880 1573             
Nextel 650 T 250,000     Y 4.100 1673             
Nextel 720 (A0172) T 210,000     Y 3.400 1673             
Nickel E       Y 8.700   0          
Nickel A       Y                
Nickel 200 T       Y 8.913              
Nickel-chromium (Ticonium 100)         Y 8.900   0          
Nimonic 80 T       Y 8.249              
NiTi  E 190,000     Y 6.450   295          
NiTi  G 89,500     Y                
Nitrile rubber T 1,030     Y 6.450   2          
Nomex (foam)                          
Nylon  TC 5,200     Y 0.065   806          
Nylon (amorphous) TE 9,900     Y 1.150   86          
Nylon (impact modified) E 13,800     Y 1.150 403  120          
Nylon 11 E 11,700     Y 1.150 414  102          
Nylon 12 E 11,700     Y 1.150 397  102          
Nylon 4-6 E 16,600     Y 1.150 397  144          
Nylon 4-6 (long glass or carbon fiber filled) E 24,800     Y 1.150 480  216          
Nylon 6 PA6-5233  E 16,600     Y 1.150 480  144          
Nylon 6 PA6-5233 (33% glass filled) G 14,000     Y 1.370 425  102          
Nylon 6 PA6-5233 (long glass or carbon fibre filled) E 24,800     Y 1.370 425  181          
Nylon 66 P 100,000     Y 1.140 425  877          
Nylon 6-6 E 16,600     Y 1.150 425  144          
Nylon 6-6 (long glass or carbon fibres) E 24,800     Y 1.440 453  172          
Nylon 66 PA66-101THSL T 5,700   7,900 Y 1.150 453  50          
Nylon 66-100HL T 8,620   12,400 Y 1.100   78          
Nylon FM-1 T 7,000 10,000   Y 1.150 453  61          
PBO S 580,000     Y 1.150   5043          
PBO T 73,000     Y 1.580   462          
PEEK (Polyetheretherkeytone) E 28,300     Y                
Phosphor Bronze E 55,000     Y   592             
Plaster T 400     Y                
Platinum T 35,000     Y 2.300   152          
Plutonium (alpha phase) T         19.840   0 914         
Plutonium (delta phase with 1%gallium for stabilizaion) T         15.900   0 914         
Polyacetal T       Y 1.420              
Polyacetal + 40% glass fibers T       Y 1.740              
Polyallomer E 15,900     Y 15.700   10          
Polybutylene Terepthalate (PBT + 40% glass fiber) T       Y 1.600 358             
Polybutylene Terepthalate (PBT) E 9,000     Y 1.300 358             
Polycarbonate E 15,900     Y 1.200 425             
Polycarbonate G 13,800     Y   492             
Polycarbonate + 40% glass fibers T       Y 1.520              
Polycarbonate PC-3030 T 6,200   9,000 Y   425             
Polyester G 15,900     Y 1.200 425  133          
Polyester Liquid Crystal Polymer G 22,100     Y                
Polyester liquid crystal polymer (LCP) G 22,100     Y                
Polyester Resin TC 4,140 17,240 8,960 Y   536             
Polyetherimid (PEI, Ultem) E 19,300     Y                
Polyethersulfone (PES) E 12,400     Y   492             
Polyethylene (high density) E 3,100     Y 0.970 342  32          
Polyethylene (low density) T 1,000     Y 0.920 480             
Polyethylene terepthalate (PET polyester) E 15,900     Y 0.940 342  169          
Polyimide (Thermoplastic) G 20,700     Y 1.270 492             
Polyimide (Thermoplastic, Aurum) E 24,800     Y   580             
Polyphenylene oxide, modified (PPO, Noryl) E 12,500     Y   580             
Polyphenylene sulphide (PPS) E 19,300     Y   269             
Polyphenylene sulphide (PPSC40, 40% carbon F) T 16,900   28,500 Y   536             
Polyphenylene sulphide (PPSG30, 30% GF) T 15,000   21,700 Y 1.460   103          
Polyphenylene sulphide (PPSG30, 40% GF) T       Y 1.640   0          
Polyphenylene sulphide (PPSG50, 50% GF) T 16,100   26,200 Y 1.520   106          
Polyphtlalamide (PPA, Amodel) E 22,800     Y 1.720   133          
Polypropylene E 12,800     Y 0.905 508             
Polypropylene (30% GF) G 9,700   15,700 Y   425             
Polypropylene (40% GF) G 10,500   17,700 Y 1.120 425  94          
Polypropylene (50% GF) G 10,800   18,900 Y 1.210 425  89          
Polystyrene T 3,000 8,000   Y 1.050 425  29          
Polystyrene (High-impact) E 6,900 13,800   Y 1.080   64          
Polystyrene crystal E 5,171 13,800   Y 1.700 342  30          
Polysulfone E 12,400 8,000   Y 1.240 342  100          
Polytetrafluroethylene PTFE) T 1,000 1,000   Y 2.160 453  5          
Polyurethane (PUG30, 30% GF) T 17,000   24,600 Y 2.200   77          
Polyurethane (PUG40, 40% carbon ) T 27,400   39,600 Y 1.430   192          
Polyurethane (PUG60, 60% GF) T 24,100   38,600 Y 1.380   175          
Polyurethane (Rigid) E 22,800     Y 1.760   130          
Polyvinyl chloride (flexible) G 2,400     Y   342             
Polyvinyl chloride (flexible) T 700     Y 1.380 386  5          
Polyvinyl Chloride (PVC) T 3,000 5,000   Y 1.400 342             
Polyvinyl chloride (rigid foam) T       Y 0.750              
Polyvinyl chloride (rigid) G 8,300     Y 1.370 353             
Polyvinyl chloride (rigid) T 6,900     Y                
Polyvinylidene fluoride (PVDF, Kynar) G 5,000     Y   353             
Proactinium T       Y 15.220     1845         
Pyrex (Corning 7740) T 69,000     Y 2.500   276          
Pyrex, tempered (Corning 7740) T 137,900     Y 2.230 563  618   0.18  Cal/g-C    
Pyroceram III/Robax (Glass ceramid) T 103,450     Y 2.230 760  464   0.18  Cal/g-C    
Quartz  P 689,476     Y   1073             
Quartz (214 fused) T 4,800 110,000   Y 2.600   18          
RA330 T 58,600     Y                
Refractaloy 26 T       Y 8.221              
Rene 41 E 200,000     Y 2.600   769          
RHA (Steel armor, MIL-A-12560) E 117,000 110,000 100,000 Y 7.860   149          
Ring-Carbon S 1.0E+15 933.0E+12 9.3E+12                  
Ring-Carbon Comp. S 1.3E+12 940.0E+9 9.5E+9                  
Rubber, gum T 2100     Y                
S-590 T       Y 8.332              
Sandstone E 1100 35100   Y 0.900   12          
SBR rubber T 280     Y 0.900   3          
SCS-0/SAS **** T 265,000     Y                
Silastic 382 T 300     Y                
Silastic 4-4515 G 900     Y                
Silica, drawn P 593,000     Y 2.500              
Silica, fused S         2.200 4858  0          
Silica, fused T                        
Silicon P 320,000   1,370,000   2.187 3293  1463          
Silicon Bronze T       Y 8.525              
Silicon Iron T       Y 7.000              
Silicon nitride P   345,000     2.330   0          
Silicon-CFCC + G 450,000                      
Silicone rubber T 655     Y 2.330   3          
Silk (silkworm) T 44,100 44,100   Y                
Silver T 14,000   3,200 Y 10.491   13 1235  234       
Silver, CP Grade, 40% Cold Worked T 29,000     Y 10.490   28 1235  234       
Silver, Sterling, 10% Cold Worked T 31,000     Y 10.400   30          
Silver, Sterling, Cold Drawn then Annealed at 523 kelvins T 40,000     Y 10.400   38          
Silver-palladium (Alborium)   61,100     Y 10.400   59          
Slate E 21,100 70,300   Y                
Solder (90Pb/10Sn) T 3,500     Y                
Spectra T 56,000       0.970              
Spectra (S1000 polyethylene) T 300,000       0.970 344  3093          
Steel E 134,000 134,000 109,880 Y 8.027   167          
Steel G 73,300 73,300 60,106 Y 0.970 344  756          
Steel  S 463,400 463,400 379,988 Y 8.027   577          
Steel  TM ++ 1,275,000 1,275,000 1,045,500 Y 8.027   1588          
Steel (12 Cr) T         7.750              
Steel (Cr-Mo) T         7.861              
Steel (piano wire) T 300,000       7.900              
Steel (Type 304 Stainless) T 58,600     Y 8.027              
Steel (Type 310 Stainless) T 57,000     Y                
Steel (Type 316 Stainless) T 71,700     Y 8.027              
Steel (Type 446 Stainless) T 54,200     Y                
Steel bridge cable (Akashi Kaikyo) S 180,000 180,000 147,600 Y 8.027   224          
Steel bridge cable, 1900 E 140,000 140,000 114,800 Y 8.027   174          
Steel bridge cable, 1940 E 155,000 155,000 127,100 Y 8.027   193          
Steel bridge cable, 1990 E 160,000 160,000 131,200 Y 8.027   199          
Steel bridge cable, Brooklyn E 115,000 115,000 94,300 Y 8.027   143          
Steel, Maraging S 2,152,000   1,764,640 Y 8.027   2681          
Steel, Mild A 46,300 46,300 38,600 Y 8.027   58          
Steel, Mild E 386,700 386,700 316,400 Y 8.027   482          
Steel, Nickel (3.25%) E 703,000 703,000 703,000 Y 7.860   894          
Steel, Nickel-Chrome G 120,000 120,000 100,000 Y 7.860   153          
Steel, nickel-chrome-molybdenum G 110,300     Y 8.027   137          
Steel, spring E 773,300     Y 7.930   975          
Steel, Stainless G 132,000     Y 7.930   166          
Steel, Stainless A 17,200     Y 8.027   21          
Steel, Stainless E 231,700     Y 8.027   289          
Steel, Stainless (13% Cr - AISI 410 - NS 14110)  G 35,000     Y 8.027   44          
Steel, Stainless (301) G 73,100     Y 7.720   95          
Steel, Stainless (6% Mo - 254 SMO)  G 30,000     Y 8.027   37          
Steel, Stainless (AISI 316L - NS 14460)  G 21,000     Y 8.000   26          
Steel, Stainless (Duplex SAF 2205 - ASTM A 669)  G 45,000     Y 7.940   57          
Steel, Stainless (Super Duplex SAF 2507)  G 55,000     Y 7.800   71          
Steel, T-1/A-514   70,000     Y 7.800   90          
Steel, Tool T 180,000 150,000 27,600 Y 8.027   224          
Stellite 6B T 99,300     Y 8.387              
Stellite 6k+A1+A309 T 99,300     Y 8.387              
Styrene acronitrile (SAN) E 12,400     Y 7.830 1033  16   0.12  Cal/g-C    
Synthane T 10,000 24,000   Y   369             
Talonite (cobalt, chromium, molybdenum) T 134,500     Y 8.387              
Tantalum T       Y 16.608     3270         
Thermoplastic elastomers (TPE) E 4,900     Y                
Thermoplastic rubbers (TPR) E 2,800     Y 4.000 425  7          
Thorium T       Y 11.720   0 2115         
Ti/Ti- diboride/Ti-aluminide metal/ceramic composite T 40,000   260,000 Y 4.000 397  100          
Tin, cast E 32,300 42,200 28,100 Y 11.280 425  29          
Titanium E 140,000     Y 4.510   310          
Titanium E 247,100     Y 4.500   549          
Titanium G 75,000     Y                
Titanium (CP Ti 70) A 55,200     Y 4.500   123          
Titanium (Gr. 12)  G 34500      Y 4.000   86          
Titanium (Gr. 2)  G 27500      Y 4.430   62          
Titanium (Gr. 5) Y G 83000      Y 4.510   184          
Titanium (Gr. 9)  G 48500      Y 4.420   110          
Titanium (heat-treated beta alloy) S 1,380,000     Y 4.480   3080          
Titanium (Ti-6AL-4V) G 97,000     Y 4.500   216          
Titanium (Ti-6AL-4V/MIL-A-46077) E 97,000     Y 4.420   219          
Tungsten A 424,800     Y 19.300   220          
Tungsten P 860,000   165,000 Y 18.800   457          
Uranium T 45,000     Y 18.950   24 1405  6.65       
Uranium (alloyed with 2% Mo or 0.75% Ti and tempered) TA 160,000     Y 18.950   84          
Uxene T75 T 8,400     Y 19.400   4          
Vectran T 39,000     Y                
Viton rubber T 830     Y                
VPD diamond /wire E 200,000     Y                
Vycor (96% silica) T 51,700     Y                
Wood +++ E 70,300 56,200 21,100 Y   1473             
Wood, Oak +++ A 7,700 4,600 3,100 Y   1473             
Wood, Pine +++ A 6,900 5,400 1,200 Y 0.700   99          
Worthite (alloy 270) T       Y 8.027              
Zinc (alloy #3) A 28,270   21,370   7.140   40          
Zinc (Zamak-5) A 32,800   26,200 Y                
Zinc, cast E 42,200 126,500 49,200 Y 7.130              
Zirconia (ZTA) T   290000    Y 6.600   0          
Zirconium T       Y 6.449              
Zylon (77 K (expands during cooling)) G 620,000     Y 1.560   3974          
Zylon (room temperature) G 580,000     Y 1.560   3718          
Zylon/epoxy composite (77 K, pre-stressed, Stycast 1266 epoxy) G 390,000 10,000   Y 1.560   2500 450         
Zylon/epoxy composite (room temperature, pre-stressed, Stycast 1266 epoxy) G 300,000 10,000   Y 1.560   1923          
                           
                           
                           

     Note: Continuous Fibre Ceramic Composites come in a wide variety of materials and types. The example given here is a ceramic-ceramic material, with ceramic fibres in a ceramic matrix. In addition to being very strong for their weight, these materials maintain their strength at very high temperatures.

* A = Typical Alloy, E = Excellent, G = Good; S = Special; TC = Typical Cast, TE = Typical Extruded; TF = Typical Forged, W = Wrought; WA = Wrought and Annealed; CD = Cold Drawn; P = perfect (No internal flaws; all molecular bonds optimal); T = Typical; F = Fictional

** High-Strength and High-Modulus Carbon Fiber-reinforced aluminum matrix composite

*** Cast iron generally contains between 5% and 10% of elements besides iron

**** CVD Silicon carbide monofilament-reinforced SRO-AL2O3-2SIO2 (SAS)

# Wrought iron contains less than 3% impurities

## Pre-Stressed, Single-Walled Nanotube Composite

### PSSWNTC-based composite armor

#### PSSWNTC-based composite armor, with Ring-Carbon reinforcing fibers added

+ Continuous Fiber Ceramic Composite

++ Tempered Martensite

Metals not typed as "P" may have trace amounts of other elements added, up to 2%. Any more than this is counted as an alloy.

Note: Continuous Fiber Ceramic Composites come in a wide variety of materials and types. The example given here is a ceramic-ceramic material, with ceramic fibers in a ceramic matrix. In addition to being very strong for their weight, these materials maintain their strength at very high temperatures.

     This document is Copyright 2002 Rodford Edmiston Smith. Anyone wishing to reproduce it must have permission from the author, who can be reached at: stickmaker@usa.net